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via Sommarive 14, I-38050 Povo (Trento), Italy

e-mail: mattarei@science.unitn.it

URL: http://www-math.science.unitn.it/˜mattarei/

ABSTRACT

We describe the additive subgroups of fields which are closed with respect

to taking inverses, in particular, with characteristic different from two.

Any such subgroup is either a subfield or the kernel of the trace map of

a quadratic subextension of the field.

1. Introduction

The following result of Hua, as stated in [Art57, Theorem 1.15], plays a role in

connection with the fundamental theorem of projective geometry (see [Art57,

Chapter II, Sections 9 and 10]): an additive map between division rings sending

1 to 1 and inverse elements to inverse elements is either an isomorphism or an

antiisomorphism of rings. The first step in the proof is showing that the map

preserves the operation (a, b) 7→ aba. This follows from Hua’s identity (which

was first mentioned in [Hua49b], see also [Jac68, page 2] or [Jac74, Exercise 9,

page 89] for the more manageable form given here)

(1) a − (a−1 + (b−1 − a)−1)−1 = aba,

which holds in any associative ring provided all inverses involved are defined,

that is, provided a, b and ab − 1 are invertible. The rest of the proof, originally

given in [Hua49a], does not use that the map preserves inverses, but rather the
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product aba. This part of the proof has been later generalized in a number

of directions, notably to arbitrary domains by Jacobson and Rickart, see the

references given in [Jac68, page 3].

A problem of a similar flavour as Hua’s result, but which seems not to have

received attention, is a description of the additive subgroups of division rings

which contain the inverses of their non-zero elements. In the present note we

fill this gap in the commutative case.

For any subset S of a field E we write S−1 = {s−1 | 0 6= s ∈ E}. We call S

inverse-closed if S−1 ⊆ S. We prove the following results.

Theorem 1: Let E be a field of characteristic different from two and let A be a

non-trivial inverse-closed additive subgroup of E. Then A is either a subfield of

E or the set of elements of trace zero in some quadratic field extension contained

in E.

Conversely, it is plain that the set of elements of trace zero in any quadratic

field extension contained in E is inverse-closed.

Theorem 2: Let E be a field of characteristic two and let A be an inverse-

closed additive subgroup of E. Then A is an F 2-subspace of F for some subfield

F of E.

Conversely, any F 2-subspace of a subfield F of characteristic two is clearly

inverse-closed.

Because of the method of the proof employed, based, in particular, on Hua’s

identity, it is natural to ask for extensions of Theorems 1 and 2 to division

rings. However, the correct extension is not clear to this author from a variety

of examples found, some of which were suggested by Patrick Morandi. Even

more generally, as Ottmar Loos and Holger Petersson have kindly pointed out,

one may investigate inverse-closed additive subgroups of Jordan division rings.

The inversion map in finite fields is of cryptographic interest. For exam-

ple, inversion in the finite field of 28 elements is the non-linear transforma-

tion employed in the S-boxes in the Advanced Encryption Standard (Rijndael,

see [FIP01]). In view of possible applications, as in [CDVSV], the special case

of Theorems 1 and 2 where E is a finite field deserves the following separate

mention.

Theorem 3: Let E be a finite field and let A be a non-trivial inverse-closed

additive subgroup of E. Then A is either a subfield of E or the set of elements

of trace zero in some quadratic field extension contained in E.
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Note that when E has characteristic two the two alternatives in the conclusion

coincide. The finiteness assumption on E allows various proofs of Theorem 3

which differ from those of the general case. For example, one of the advan-

tages of finite fields is that an arbitrary subset can be described by the unique

monic polynomial which has the elements of the subset as simple roots. Alge-

braic properties of the subset often translate into properties of the correspond-

ing polynomial. In particular, here we record a proof of Theorem 3 based on

p-polynomials.

I am grateful to Andrea Caranti for asking the special question answered in

Theorem 3.

2. Proofs

Note that an inverse-closed additive subgroup A of E is necessarily a subspace

of E over its prime field. This is clear if E has positive characteristic. If

E has characteristic zero, then A is a Q-subspace of E, because (mn−1)a =

m(na−1)−1 ∈ A for a ∈ A∗ and m, n integers with n 6= 0.

Lemma 4: Let A be an inverse-closed additive subgroup of E. Then a2b ∈ A

for all a, b ∈ A. Furthermore, if E has characteristic different from two, then

abc ∈ A for all a, b, c ∈ A.

Proof: Hua’s identity (1) implies that aba= a2b ∈ A for all a, b ∈ A, the degene-

rate cases where one or more of a, b and ab−1 vanish being obvious. The second

assertion follows at once from the identity 2abc = (a + c)2b − a2b − c2b.

It follows at once by taking c = 1 in Lemma 4, that the only inverse-closed

additive subgroups containing 1 of a field E of characteristic not equal to two

are the subfields of E. According to Theorem 2, this assertion does not extend

to arbitrary fields of characteristic two.

Proof of Theorem 1: The inverse-closed subset K = {ab | a, b ∈ A} of E

is a subring, and hence a subfield, because ab − cd = a(b − a−1cd) ∈ K and

(ab)(cd) = (abc)d ∈ K for all a, b, c, d ∈ A with a 6= 0. Choose a non-zero

element a ∈ A. Then Aa−1 ⊆ K, and Ka ⊆ A, from the second assertion of

Lemma 4. Hence A = Ka, with a2 ∈ K. We conclude that either A coincides

with the subfield K of E, or is the set of elements of trace zero in the quadratic

field extension K(a) = K + Ka of E.

The following example shows that the subset {ab | a, b ∈ A} of E, which

we have used in the proof of Theorem 1, need not be a subfield when E has
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characteristic two. Let E = F2(u1, u2, u3, u4) be a purely transcendental ex-

tension of transcendence degree four of the field with two elements, F2, and let

A = E2u1 + E2u2 + E2u3 + E2u4, where E2 denotes the image of E under the

Frobenius endomorphism a 7→ a2. Then {ab | a, b ∈ A} = E2 +
∑

i<j E2uiuj is

a vector space over E2 of dimension 7, and hence not a subfield of E.

Proof of Theorem 2: Let R be the subring generated by the squares of the

elements of A, and let K be the subfield of E generated by R. The first assertion

of Lemma 4 shows inductively that A is an R-submodule of E. Since ar−1 =

(a−1r)−1 ∈ A for a ∈ A and r ∈ R we conclude that A is a K-subspace of E.

Finally, if F is the subfield of E generated by A then K = F 2 and A ⊆ F , as

desired.

We conclude by giving a proof of Theorem 3, the special case for finite fields

of Theorems 1 and 2, based on p-polynomials. A p-polynomial, over a field of

positive characteristic p, is a polynomial whose all monomials have exponents

equal to powers of p. A basic property of p-polynomials is that their sets of

roots in any field are additive subgroups. We refer to Chapter 3 of [LN83]

for an extensive discussion of p-polynomials. We also need the concept of self-

reciprocal polynomial. For a polynomial f(x) =
∑n

i=0
aix

i with a0an 6= 0 we

define its reciprocal polynomial as xnf(1/x) =
∑n

i=0
an−ix

i. The roots of the

reciprocal polynomial are clearly the inverses of the roots of the original polyno-

mial, with corresponding multiplicities. We call self-reciprocal a polynomial

f(x) =
∑n

i=0
aix

i, with a0an 6= 0, which equals its reciprocal polynomial up to

a scalar factor. This clearly implies that an = ±a0. For a polynomial with non-

zero constant term and with distinct roots, being self-reciprocal is equivalent to

its set of roots being inverse-closed.

Proof of Theorem 3: Let E have the order pf . Then E is the splitting field over

Fp of the polynomial xpf

− x. According to Theorems 3.50 and 3.52 of [LN83],

the additive subgroups A of E, that is, its Fp-subspaces, are in a bijection with

the monic divisors fA(x) of xpf

− x which are p-polynomials, given by letting

such a polynomial correspond to the set A of its roots. An additive subgroup A

of E is inverse-closed if and only if fA(x)/x is self-reciprocal. Since fA(x) is a

p-polynomial, degree considerations easily imply that it is a binomial, and hence

has the form xpr

− x or xpr

+ x, for some r. In the former case A is the subfield

of E of order pr. In the latter case we may assume that E has characteristic

different from two, and hence A is not a subfield. Then the roots in E of the

polynomial xp2r

− x, which form a subfield of E of order ps, with s a divisor of
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2r , include the pr + 1 elements of A ∪ {1}. Hence the roots of the polynomial

form a subfield of E of order p2r. The roots of xpr

+ x form the kernel of the

trace map of this subfield over its subfield of order pr.

Added in press. Similar results have recently appeared in a paper of D.

Goldstein, R. Guralnick, L. Small and E. Zelmanov, Inversion-invariant additive

subgroups of division rings, Pacific Journal of Mathematics 227 (2006), no. 2,

287–294.
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